引言 Prepare my software:
“Anaconda, as it has become the de-facto standard for data science and bioinformatics. Also, it is the distribution that will allow you to install software from Bioconda ”
Package:
Package
Purpose
Package
pandas
DendroPY
phylogenetics
Numpy
PyMol
Molecular visualization
Scipy
scikit-learn
ML tools
Biopython
Cpython
High performance for Big data
seaborn
Numba
High performance for Big data
rpy2
R interface
Dask
Parallel processing for Big Data
PyVCF
NGS
jupytext /lab
Pysam
NGS
R
HTSeq
NGS processing
A table showing the various software packages that are useful in bioinformatics
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 # 01 install base conda env conda create -n bioinformatics_base python=3.10 conda activate bioinformatics_base # why use base env? 不同类型的包太多了。新的任务可以clone base env ,在此基础上install special packages.# we can use # conda create -n scikit-learn --clone bioinformatics_base# conda activate scikit-learn & conda install scikit-learn# 02 add the bioconda and conda-forge channels to our source listconda config --add channels bioconda conda config --add channels conda-forge # 03 install packages# install from requirements # conda list -e > reqiurements.txtconda install --yes --file requirements.txt # 04 install R from condaconda install rpy2 r-essentials r-gridextra
Requirements.txt
1 2 3 4 5 6 7 biopython==1.79 jupyterlab==3.2.1 jupytext==1.13 matplotlib==3.4.3 numpy==1.21.3 pandas==1.3.4 scipy==1.7.1
1 2 3 4 # env for Rcreate -n bioinformatics_r --clone bioinformatics_base conda activate bioinformatics_r conda install r-ggplot2=3.3.5 r-lazyeval r-gridextra rpy2
Aligment
“pysam, a Python wrapper to the SAMtools C API”
1 conda install –c bioconda pysam
pandas